C	Question		Answer	Marks	Guidance
1	(a)		work done = force \times distance \underline{moved} in the direction of force	B1	Allow : work done = force × displacement in direction of force
	(b)	(i)	mass = $700/9.81$ or mass = 71.4 (kg) kinetic energy = $\frac{1}{2} \times 71.4 \times 15^2$ kinetic energy = 8.0×10^3 (J)	C1 A1	Note : Answer to 3 sf is 8.03×10^{3} (J) Note : $\frac{1}{2} \times 700 \times 15^{2} = 7.9 \times 10^{4}$, scores zero Allow : 1 sf answer
		(ii)	GPE = mgh 700×32 / 2.24×10^4 (J) work done = $2.24 \times 10^4 - 8.03 \times 10^3$ resistive force = $\frac{1.44 \times 10^4}{120}$ resistive force = 120 (N)	C1 C1	Possible ecf Note: Dividing the work done by 32 (m) gives 450 (N). This
			Total	6	answer scores 2 marks.

Que	estion		Answers	Marks	Guidance
2	(a)		total energy of a (closed) system remains constant or Energy cannot be created or destroyed (it can only be transferred into other forms) or total initial energy = total final energy	B1	Not: 'Energy cannot be created / destroyed / lost'
	(b)		work done = force × distance moved in the direction of the force Unit: N m or J	M1 A1 B1	Allow: 'force × displacement' for the M1 mark Note: The unit mark is an independent mark
	(c)	(i)	<u>kinetic</u> energy → heat	B1	Not: friction / deformation / sound / KE of dust / KE of Earth
		(ii)	$(E = \frac{1}{2}mv^{2})$ $8.4 \times 10^{16} = \frac{1}{2} \times 3.0 \times 10^{8} \times v^{2}$	C1	Note: This mark is for correct substitution
			$v^{2} = \frac{2 \times 8.4 \times 10^{16}}{3.0 \times 10^{8}} \text{or} v = \sqrt{\frac{2 \times 8.4 \times 10^{16}}{3.0 \times 10^{8}}}$ $(v = 2.37 \times 10^{4} \text{ m s}^{-1})$	C1 A0	Allow : 2 marks for $v^2 = 5.6 \times 10^8$ Allow : 1 mark for a bald answer of 2.4×10^4
		(iii)	$8.4 \times 10^{16} = F \times 200$ $F = \frac{8.4 \times 10^{16}}{200}$ force = 4.2 × 10 ¹⁴ (N)	C1 C1 A1	Possible ecf Allow: $a = (-)\frac{u^2}{2s}$ $a = (-)\frac{(2.37 \times 10^4)^2}{2 \times 200} \text{or} a = (-)\frac{(2 \times 10^4)^2}{2 \times 200} \qquad \text{C1}$ $a = 1.4 \times 10^6 \text{ (m s}^{-2}) \text{or} a = 1.0 \times 10^6 \text{ (m s}^{-2}) \qquad \text{C1}$ $F = 3.0 \times 10^8 \times 1.4 \times 10^6 \text{ or} F = 3.0 \times 10^8 \times 1.0 \times 10^6$ $\text{force} = 4.2 \times 10^{14} \text{ (N)} \text{or force} = 3.0 \times 10^{14} \text{ (N)} \qquad \text{A1}$
			Total	10	

3	Expected Answers	Marks	Additional Guidance
a	work (done) = force × distance <u>moved</u> in the direction of force	B1	Allow : work = force × displacement in direction of force Not : work (done) = energy transfer
b(i)	(Net /total /resultant force is) zero	B1	
	The <u>acceleration</u> is zero	B1	Not ' $a = 0$ '
b(ii)	$9.0 \times 10^3 \cos 83^\circ \text{ or } 9.0 \times 10^3 \sin 7^\circ$	C1	
	$1.1 \times 10^3 (N)$	A1	Not '9.0 × $10^3 \cos 7^\circ$ '
b(iii)	work done per second = 300×18		
	work done per second = $5400 \text{ (J s}^{-1}\text{)}$	B1	
b(iv)	(total force down slope =) $1100 + 300$ (N) (power =) 1400×18 (power =) 2.52×10^4 (W) or 2.5×10^4 (W)	C1 C1 A1	Allow: 1400 (N) Possible ecf from (b)(ii)
	or		
	rate of work done against weight = $1.1 \times 10^3 \times 18$ (= 19800 W) power = $19800 + 5400$ power = 2.52×10^4 (W) or 2.5×10^4 (W)	C1 C1 A1	Allow: ' $Fx\cos\theta = 9.0 \times 10^3 \times 18 \times \cos 83^\circ$ ' Possible ecf from (b)(ii) and (b)(iii)
	Total	9	

Question		Expected Answers	Marks	Additional Guidance
4 (a		Energy cannot be created or destroyed; it can only be transferred/transformed into other forms or The (total) energy of a system remains constant or (total) initial energy = (total) final energy (AW)	B1	Allow: 'Energy cannot be created / destroyed / lost'
(b)	Any suitable example of something strained (eg: stretched elastic band)	B1	
(c	(i)	$E_{\rm p=} mgh \ {\rm and} \ E_{\rm k} = {1 \over 2} mv^2 \ ({\rm Allow} \ \Delta h \ {\rm for} \ h)$	B1	Not: $E_k = mgh$
	(ii)	$mgh = \frac{1}{2}mv^{2}$ $v^{2} = 2gh \text{or} v = \sqrt{2gh}$	B1 B1	
(d	(i)	$m = \rho V$ $m = 1.0 \times 10^3 \times (1.2 \times 10^{-2} \times 2.0 \times 10^7)$ mass of water = 2.4×10^8 (kg)	C1 C1 A0	Allow any subject for the density equation
	(ii)	loss in potential energy = $2.4 \times 10^8 \times 9.81 \times 2.5 \times 10^3$ 30% of GPE = $0.3 \times 5.89 \times 10^{12}$ (=1.77 × 10 ¹²)	C1 C1	Allow 1 mark for '5.89 × 10^{12} (J)' Allow 2 marks for '1.77 × 10^{12} (J)'
		power = $\frac{1.77 \times 10^{12}}{900}$ power = $1.9(63) \times 10^9$ (W) (≈ 2 GW)	C1 A0	Note : $\frac{5.89 \times 10^{12}}{900}$ (= 6.5 GW) scores 2 marks
	(iii)	Any correct suitable suggestion; eg: the energy supply is not constant/ cannot capture all the rain water / large area (for collection)	B1	Note: Do not allow reference to 'inefficiency' / 'cost'
		Total	11	

C	uesti	on	Answer	Marks	Guidance
5	а		pressure and stress or pressure and Young modulus or stress and Young modulus or moment (of a force) and torque (of a couple)	B1	 Allow other correct combinations Allow the following: e.m.f. and p.d. Any two from frequency, activity, decay constant and Hubble constant because of the s⁻¹ Ignore any units given (even if incorrect) Special case: Allow quantities with no units, e.g. strain and efficiency. Not any combination of length, distance and extension
	b	i	x-component = 6.0 (N) and y-component = 2.0 (N)	B1	Allow 1 sf answers Allow tolerance ± 0.1 N Not x-component = 2.0 (N) and y-component = 6.0 (N)
		ii	resultant components are 8.0 (N) and 5.0 (N)	C1	Allow: 1 sf values for this C1 mark Possible ecf from (b)(i) with x-components = 2 + b(i) and y- component = 3 + b(i) .
			$F^2 = 8.0^2 + 5.0^2$ force = 9.4 (N)	C1 A1	Note: Answer is 9.43 to 3sf Not an answer left in square root form, e.g $\sqrt{89}$ Allow full credit for a scale drawing; marks awarded as below: • A dot / cross / mark at 8.0,5.0 (\pm 0.1) C1 • Line drawn from 0,0 to 8.0,5.0 C1 • force = 9.4 \pm 0.1 (N) A1
	С	i	Down	B1	Allow a downward arrow on Fig. 2.2

Question	Answer	Marks	Guidance
ii	Horizontal component of the velocity is constant	B1	Allow: There is no horizontal acceleration
	There is no horizontal force	B1	Allow: Weight / g has no horizontal component or Weight / g is 90° to the horizontal or Weight / g is vertical or 'there is only a vertical force' (Not 'gravity' for 'weight'; allow 'force of gravity')
iii	 Any two from: It decreases from X to Y It is zero at Y / It has the same magnitude at X and Z It increases from Y to Z It is positive from X to Y and negative from Y to Z (or vice versa) 	B1 × 2	Ignore description in terms of acceleration or deceleration Allow it changes sign / direction from X to Z
	Total	10	

Q	uestion	Answer	Marks	Guidance
6		 Any one from: Mass obtained using a balance / scales Weight / load obtained using a newtonmeter / spring balance Distance / height obtained using a ruler / metre stick / measuring tape 	B1	
		Time obtained using a clock / (stop)watch / timer or light- gate <u>and</u> timer or light-gate <u>and</u> data-logger	B1	The term clock / (stop)watch / timer /data-logger must be spelled correctly to gain this mark
		(output power =) 'mass \times $g \times$ distance'/time or 'weight \times distance/time' or 'weight \times speed' input power = output power/0.15	B1 B1	Allow symbols, e.g <i>mgh/t</i> , <i>Wh/t</i> and <i>Wv</i>
		Total	4	