Question			Answer	Marks	Guidance
1	(a)		work done $=$ force \times distance moved in the direction of force	B1	Allow: work done $=$ force \times displacement in direction of force
	(b)	(i)	$\begin{aligned} & \text { mass }=700 / 9.81 \text { or mass }=71.4(\mathrm{~kg}) \\ & \text { kinetic energy }=1 / 2 \times 71.4 \times 15^{2} \\ & \text { kinetic energy }=8.0 \times 10^{3}(\mathrm{~J}) \end{aligned}$	$\begin{aligned} & \mathrm{C} 1 \\ & \mathrm{~A} 1 \end{aligned}$	Note: Answer to 3 sf is $8.03 \times 10^{3}(\mathrm{~J})$ Note: ${ }^{1} 1 / 2 \times 700 \times 15^{2}=7.9 \times 10^{4}$ scores zero Allow: 1 sf answer
		(ii)	$\begin{aligned} & \text { GPE }=m g h \\ & 700 \times 32 \quad / 2.24 \times 10^{4}(\mathrm{~J}) \\ & \text { work done }=2.24 \times 10^{4}-8.03 \times 10^{3} \\ & \text { resistive force }=\frac{1.44 \times 10^{4}}{120} \\ & \text { resistive force }=120(\mathrm{~N}) \end{aligned}$	C1 C1 A1	Possible ecf Note: Dividing the work done by 32 (m) gives 450 (N). This answer scores 2 marks.
			Total	6	

3	Expected Answers	Marks	Additional Guidance
a	work (done) $=$ force \times distance moved in the direction of force	B1	Allow: work $=$ force \times displacement in direction of force Not: work (done) = energy transfer
b(i)	(Net /total /resultant force is) zero The acceleration is zero	$\begin{aligned} & \text { B1 } \\ & \text { B1 } \end{aligned}$	Not ' $\mathrm{a}=0$ '
b(ii)	$\begin{aligned} & 9.0 \times 10^{3} \cos 83^{\circ} \text { or } 9.0 \times 10^{3} \sin 7^{\circ} \\ & 1.1 \times 10^{3}(\mathrm{~N}) \end{aligned}$	$\begin{aligned} & \text { C1 } \\ & \text { A1 } \end{aligned}$	Not ' $9.0 \times 10^{3} \cos 7^{\circ}$,
b(iii)	work done per second $=300 \times 18$ work done per second $=5400\left(\mathrm{~J} \mathrm{~s}^{-1}\right)$	B1	
b(iv)	```(total force down slope \(=\)) \(1100+300(\mathrm{~N})\) (power =) \(1400 \times 18\) (power =) \(2.52 \times 10^{4}(\mathrm{~W})\) or \(2.5 \times 10^{4}(\mathrm{~W})\) or rate of work done against weight \(=1.1 \times 10^{3} \times 18(=19800 \mathrm{~W})\) power \(=19800+5400\) power \(=2.52 \times 10^{4}(\mathrm{~W})\) or \(2.5 \times 10^{4}(\mathrm{~W})\)```	C1 C1 A1 C1 C1 A1	Allow: 1400 (N) Possible ecf from (b)(ii) Allow: ' $F x \cos \theta=9.0 \times 10^{3} \times 18 \times \cos 83^{\circ}$ ' Possible ecf from (b)(ii) and (b)(iii)
	Total	9	

Question			Expected Answers	Marks	Additional Guidance
4	(a)		Energy cannot be created or destroyed; it can only be transferred/transformed into other forms or The (total) energy of a system remains constant or (total) initial energy = (total) final energy (AW)	B1	Allow: 'Energy cannot be created / destroyed / lost'
	(b)		Any suitable example of something strained (eg: stretched elastic band)	B1	
	(c)	(i)	$E_{\mathrm{p}=} m g h$ and $E_{\mathrm{k}}=\frac{1}{2} m v^{2} \quad($ Allow Δh for $h)$	B1	Not: $E_{\mathrm{k}}=m g h$
		(ii)	$\begin{aligned} & m g h=\frac{1}{2} m v^{2} \\ & v^{2}=2 g h \quad \text { or } \quad v=\sqrt{2 g h} \end{aligned}$	$\begin{aligned} & \mathrm{B} 1 \\ & \mathrm{~B} 1 \end{aligned}$	
	(d)	(i)	$\begin{aligned} & m=\rho V \\ & m=1.0 \times 10^{3} \times\left(1.2 \times 10^{-2} \times 2.0 \times 10^{7}\right) \\ & \text { mass of water }=2.4 \times 10^{8}(\mathrm{~kg}) \\ & \hline \end{aligned}$	$\begin{aligned} & \text { C1 } \\ & \text { C1 } \\ & \text { A0 } \end{aligned}$	Allow any subject for the density equation
		(ii)	$\begin{aligned} & \text { loss in potential energy }=2.4 \times 10^{8} \times 9.81 \times 2.5 \times 10^{3} \\ & 30 \% \text { of GPE }=0.3 \times 5.89 \times 10^{12}\left(=1.77 \times 10^{12}\right) \\ & \text { power }=\frac{1.77 \times 10^{12}}{900} \\ & \text { power }=1.9(63) \times 10^{9}(\mathrm{~W})(\approx 2 \mathrm{GW}) \end{aligned}$	C1 C1 C1 A0	Allow 1 mark for ' $5.89 \times 10^{12}(\mathrm{~J})$ ' Allow 2 marks for ' $1.77 \times 10^{12}(\mathrm{~J})$ ' Note: $\frac{5.89 \times 10^{12}}{900}(=6.5 \mathrm{GW})$ scores 2 marks
		(iii)	Any correct suitable suggestion; eg: the energy supply is not constant/ cannot capture all the rain water / large area (for collection)	B1	Note: Do not allow reference to 'inefficiency' / 'cost'
			Total	11	

| Question | | Answer | Marks | Guidance |
| :--- | :--- | :--- | :--- | :--- | :--- |
| $\mathbf{5}$ | a | $\begin{array}{l}\text { pressure and stress } \\ \text { or pressure and Young modulus } \\ \text { or stress and Young modulus } \\ \text { or moment (of a force) and torque (of a couple) }\end{array}$ | $\begin{array}{l}\text { Allow other correct combinations } \\ \text { Allow the following: } \\ \text { e.m.f. and p.d. } \\ \text { Any two from frequency, activity, decay constant and } \\ \text { Hubble constant because of the s }{ }^{-1}\end{array}$ | |
| Ignore any units given (even if incorrect) | | | | |$\}$

Question		Answer	Marks	Guidance
	ii	Horizontal component of the velocity is constant There is no horizontal force	$\begin{aligned} & \mathrm{B} 1 \\ & \mathrm{~B} 1 \end{aligned}$	Allow: There is no horizontal acceleration Allow: Weight / g has no horizontal component or Weight / g is 90° to the horizontal or Weight / g is vertical or 'there is only a vertical force' (Not 'gravity' for 'weight'; allow 'force of gravity')
	iii	Any two from: - It decreases from \mathbf{X} to \mathbf{Y} - It is zero at \mathbf{Y} / It has the same magnitude at \mathbf{X} and \mathbf{Z} - It increases from \mathbf{Y} to \mathbf{Z} - It is positive from \mathbf{X} to \mathbf{Y} and negative from \mathbf{Y} to \mathbf{Z} (or vice versa)	B1 $\times 2$	Ignore description in terms of acceleration or deceleration Allow it changes sign / direction from \mathbf{X} to \mathbf{Z}
		Total	10	

| Question | | Answer | Marks | Guidance |
| :--- | :--- | :--- | :--- | :--- | :--- |
| 6 | Any one from:
 \bullet
 \bullet Mass obtained using a balance / scales
 Weight / load obtained using a newtonmeter / spring
 balance
 Distance / height obtained using a ruler / metre stick /
 measuring tape
 Time obtained using a clock / (stop)watch / timer or light-
 gate and timer or light-gate and data-logger
 (output power $=$) 'mass $\times g \times$ distance'/time
 or 'weight \times distance/time' or 'weight \times speed'
 input power $=$ output power/0.15 | B1 | B The term clock / (stop)watch / timer /data-logger must | |
| be spelled correctly to gain this mark | | | | |

